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Abstract 

The energy operator in AdS supersymmetry is kx~hally positive, i.e., II - C,{Q,, Q,+}, but 

in supersymmctric field lhcorics the standard cncrgy dcrwity is not ncccssarily positive. Further, 

calculations of <I/ > by <-function regularization of Lhc sum of bonon and krmiuu mode cncrgics 

in a supermultiplct gives non-scro results. In two-dimensional interacting Geld thcorics with 

AdS supersymmctry, WC calculate the cncrgy operator and the other O(2,l) gcncrntors from 

the supercharge anticommutator {Qp,qi} by canonical methods, and WC lind gcncralors which 

dilTcr from the slnndard ones by surface terms. The improved cncrgy density is non-ncgntive 

and vanishes only in supcrsymmclric configurations. We prove lhat radiative corrections to the 

improved <If > vanish LO all orders in perturbation theory in supcrsymmctric vacua. 

l Suppw~~l in p;wl by NSV Cr:ml No. R-W7 IU%l’llY nncl I)c~p:wlwc~~l d l?wrgy (!mlr:d I)I&A(‘-05iG 11110 
3nEB. 



I. InLroduction. 

In ;L allpc!rsylllrncl.ric field throry in Minkowrki space, thcrc is a sl.riking rclal.ion bctwwn 

the vacuum cncrgy and prcscrvation or s[)onLancous breakdown of supcrsyrnrnclry [I,S]. 1Sxact 

~upcrsyrnmctry implies thnt the vacuum energy vanishes to all finilc orders or pcrturbnlion 

theory, and convcrscly. Spontaneous brrakdown implies that the vacuum cncrgy is positive, 

and convcrscly. IIcurislicnlly, lhcsc l’acls follow rrorn Lhc posilivity or Ihc cncrgy operator I/ - 

C,{Q,,,Qz} where QP is lhc spinor charge. 

In this note we explore the corresponding situalion in supersymmelric field theories in anli-de 

Sither space which occurs as a natural sp,ace-time background in supergravity theories both in 

d = 4 [3] and higher [I] dimensions. The large cosmological constant is a serious problem in such 

theories, and one may view the prcscnt work as part or a long range study of that problem. 

In a fixed Ad.9 background of d = 2 or 4 dimensions, supcrsymmctric field theories are 

invariant under lrnnsl’ormations of Lhc supergroup OSp(N, d). For the simplest case N = 1, 

lhcre is the anticommutator 

{Q.,,gB} = z(7.M.d + io-*M.b),# 

t-f, 7)) = 2rf’ 

f[y-, 7’1 = lr** (1) 

which rclalcs the spinor charge QO to the generators MAQ or lhe space-lime group O(d - 1,2). 

In our notation the indicts A, B,... range rrom 0 lo d, while a, b (and p, V) range rrom 0 Lo d - 1. 

The energy operator II = M.d is rormally positive (as is quickly shown by a suitable trace 

ol (1)) and its cxpcclation value in a supcrsymmetric vncuum would be cxpcctcd to vanish. Yet 

two problems suggc&. that all is not well with the conventional interprelAion and motivate the 

prcscnt study. 

A) The classica cncrgy i? = Id”-‘zfic computed by standard proecdurc dots not 

have a positive dcfinitc intcgmnd (l’or scalar fields) [3] and enn hnvc nrbilrnry sign cvcn in a 

supcrsymmclric vacuum. 

1)) A compuL:rtion [5] or lhc sell-cncrgy of lrcc supcrmulliplcls by a ~iimclion rrRuI:lrirntion 

t&niquc yiclclccl non-zero results (ror N < 5) in (A@)~, whcrras in flnl npxcc thcrc in an t*xnet 

r:u~cc*llaLiun bcll.wccn bowon and I’crmion contribulions. 
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One rccmt approach to the p:~radox mid by I{) w:w thr obscrvntion [G] that iT Q. ix rep 

rcscntrd in terms of rrcc Geld creators and annihilators, then the Ilarniltxmian operator com- 

putcd Tram f{Qr.,Qz} = /I naturally appcnrs in normal orclcrcd form and thus nnnihilnt.cs 

the vacuum. It w,as concluded that the (Junelion rcgularizntion calculation violatrs supcrsym- 

mctry. This is also one direct conclusion of the prcscnt work, but our approach is rather dilTcrcnt 

from [G). In a class or two-dimcnsionnl supcrsymmctric thcorics with interactions we dcGnc the 

spinor charge Q,, as an integral ol the supercurrent. WC then cnlculatc {QP,qB} by a method 

equivalent to canonical commutation relations, and obtain space-time gcncrators MAB which arc 

“improved” with respect IAJ the standard ones by the addition ol surface terms. The improved 

energy E = ldz& has a non negative intcgrand which vanishes only in supcrsymmctric 

field conllgurations. WC show that the corresponding operator H has vanishing expectation value 

in a supersymmetric vacuum to all orders in perturbation theory. The situation of vacuum energy 

in AdS is thus essentially the same as in flat-space supersymmetry. Some dilTerences, related to 

vacuum stability and boundary conditions, are discussed in Section M. 

Il. The Geometry or (Ads)*: 

Let us begin the discussion with a quick rcvicw ol the gcomctry or (Ads)* which is the 

hyperboloid r~~~y~y~ = a-* cmbcddcd in R3 with Cartesian coordinates yA and flat metric 

‘)AB = (+-+). One can introduce intrinsic coordinates t, p via 

yO=a-‘sintsccp ~‘=a-‘tanp y’ = -a-I costsecp 

and the line element induced lrom the embedding takes the conrormally flat rorm 

da’ = g,,dz’dz” = ’ 
a’ COS p 

(dt’ - dp’) 

(2) 

(3) 

The hyperboloid is covered once il one takea -r/2 C p < x/2 and is 5 t < A but to avoid 

closed tirnclike curves and Lo incorporate Gelds or arbitrary I.agrangian nuass it is conventional 

to pass lo the covering sp.ace by removing the rcslriclions on the range ol t. 

The non-vanishing ChrisLolTcl symbols are I’:, = r:, = l’ft = rsP = tan p. With sweibcin 
.I . . 

V: = (acosp)-‘6; one can compu~r the spin conncclion UP’ = -Lnnp and u,“’ = 0. The 

curvature is RPyPo = as(grpgv~ - gFagN,,), and /ZPIIy = o’g,,. 

To rormulato supersymmetric thcorirs one nerds the nol.ion or Killing spinorx, which arc 
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spinors C(Z) which satisry 

L),<(Z) = -$~&) (4) 

In the coordinate system and rramc used here, the solutions ol (4) are c(z) = S(z)c whcrc f. is 

a constant spinor and 

P -&/a S(z) = (COY p)-‘l*[eos i + i-f’ sin i]e (5) 

which satisfies s(z)S(z) = 1, with s(z) = $S+(z)T3, and 

3(2)7’S(z) = 7*Kf1 + ia*‘K~* (6) 

where the KL are Killing vectors which generate the O(2,l) isometry group of the hyperboloid, 

specifically K,+B = KsB& and 
a 

Ko2 = - at 

KIZ 
. . a a 

= -smtsinpE+costcosp5 (7) 

KOI 
a a 

= costsinpz +sintcospq 

The first of these is the time translation generator which is conjugate to energy. 

IU. The model and its conserved charges and vacua. 

We now come to the model which involves a multiplet of real fields d(z), +(z), F(z) with 

transformation rules 

a(4 = ++qz) 

W(4 = t-i dd4 + ~(4kb4 (8) 

6F(z) = -is(z) P$(z) 

Using Killing spinors (4) one can show that these gcncrate the algebra (1). For a general 

superpotential M’(d), the kinetic and interaction terms or the rollowing action are separately 

invariant under (8), 

S = i / dzzfi{tY@& + i&*D,$ + Fa + 2FW’ + 2nW - W”&} (9) 

All indices are raised by Lhc inverse metric and swcibein or (Ad.‘?),; the spin connection in I),, = 

a, + &,.bOab is :uclunlly optional for Mnjorana spinorn. The rnodcl is crwily gcncmlizcd to include 
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arbitrary numbers of multiplcts &, pi, Fi. Note that the action depends on the superpotential 

W(4) as well as derivatives W’ and W”, and that one obtains the conventional form in the flat 

space limit (a r+ 0). 

The generators of O(2,l) transformations and the supersymmetry charges can be obtained 

by the method of Noether’s theorem, which yields 

YiT*El= / dp&jTo,K& 

Qc, = /+t/=!is(~).~J~ 

with stress tensor and supercurrent 

T,w = 4MA + +D. + xD,)ti - g,,[~(W)2 - ;(W’(4))2 + aw(#)] (11) 

J’ = (iW + iW’(Wt’ti o-4 

where the fermion equation of motion has been used and the auxiliary field F has been eliminated 

(see below). The stress tensor satisfies the expected covariant’conservation law D@T,, = 0, but 

the supercurrent satisfies D,J“ = -37,. J“ which gives a conserved spinor charge because of 

(4). 

The equations of motion are 
6s 
-=F+W’(qb)=O 
6F 

6s -=- 
64 

+ + FW”(&) - ;W”(+)$+ = 0 (13) 

z = (Cy’D, - wy4)M = 0 

Any O(2,l) invariant vacuum stale has <b(z)> = consl;\nt, and <&> vanishes clnssicnlly. 

Further, < F(z) >= 0 is the signal of a supcrsymmctry proserving ground state, while < 

F(z) ># 0 indicates supersymmctry brooking. 

Thus the possible 0(2, I) invarinnt chrssicd stnlcs of Lhc syslcm arc crilical points of lhc 

paLcntird 

V(b) = ;(w’(b))2 - w4. (1.1) 
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i.e., 

V’(4) = w’(+)(w(+) - 4) = 0 

Any root 4, of W’(4) = 0 is a possible supersymmetric state, while any root ‘$b of W”(4) = a 

is a possible state of broken symmetry. In the latter case W”($b) = a is the Lagrangian mass 

appropriate to a Goldstone spinor in (AdS)z. The non-zero value is related to the fact that the 

covariant divergence of the supercurrent is not zero. (See [7] for a discussion of the 4-dimensional 

case.) If neither W’(d) = 0 nor W”(4) = a can be satisfied, then the system has no O(2,l) 

invariant classical states. 

We now note that the scalar terms of the energy density in (11) are not necessarily positive, and 

for supersymmetric states, the energy density is q = V(&) = -oW(&) which is of arbitrary 

sign. This is the situation noted in the introduction. 

We still do not know whether the states disc&ad above are stable. To study this we examine 

Mea for small fluctuations h(z) = &(z) - 4 with Lagrangian masa 

V”(d) = w”(4)(w”(+) - 41 + W$qw”‘(!b) (15) 

which can be of any sign. If V”(4) < 0 we perform a scaling argument similar to [3]. After 

scaling h(z) = (eosp)*i(z) and integration by parts we find that the total energy is convergent 

and positive for real X = 4 + Jm so that V”(a) > -fa’ is required for stability. One 

also finds that h(z) - (eos p)’ is the falloff condition of regular solutions of the fluctuation wave 

equation ’ h + V”(b)h = 0, and that for V”(b) > -pa z the fluctuation wave functions are 

the basis of a unitary irreducible representation of O(2,l). For supersymmetric critical points, 

W’(+.) = 0, the stability condition is always satisfied. For non-supersymmetric critical points 

the condition becomes W’(+b)W”‘(bb) > -;I ‘a2 which may or may not be satislied. 
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V. ImprovA O(2, I) G!nrr:~lors 

1.~1 us uow ~tucly lhc cnqy ~unclional 

nToz=; 1 I b (&4)* + i&o&ll, + 
w’(s))2 - 2oW(d) - a2 COG p 1 

(IG) 

‘I’hc scal:u part is of indcfinilc sign due to the term -2aW(4). IIowcvcr, we can tnkc lhis term, 

p:rrtinlly inlcgralc using iJ, Ial p = cos-* p, complctc 111~: square in O,q5 and find J. new cncrgy 

operator 

Mm = i 
I 

dp{(ilt#)* + (a,,# + a-’ tan pW’(q4))’ + i&j&$ + a-*W’(&)‘} (17) 

which dircrs from the lirsl by a surface term 

- 
MO2 = MO:, + ,“:;, a-’ 1”” P[q$(k P)) + W(#, -p)] (18) 

Clxssicolly, the new expnnsion has lhc dcsircd property Lhal the scalar lcrms in the intcgrand 

arc positive scrni-dclinite and vanish only in supcrsymmetric backgrounds where W’(&.) = 0. In 

such a background we expect lo dcnl with field contigurations of the form 4(z) = q&+h(z) where 

h(z) is n Ilucluntion ticld which can be lnrge in the interior, but dccnys as p I+ *n/2 at the rate 

h(z) - (coup)* of rrgular solulions of Lhc lincxrizcd wnvo cqualion, i.e., X = 4 + Ia-’ W” - 41. 

For such licld conligur:rLions lhr surfncc term is an irrclcvant inlinite constanl, independent of 

the IlucLuaLion h(z). 

In Lhis paper WC implicilly consider only the regular solutions of lhc lincnrirrd wnve cqmtions. 

Ilowrvcr, il xppmlrs Lhnl Lhc irrcguhrr solulions h(z) - (cosp)’ wilh I= a - lo-‘W” - 41 will 

Ix? nccc3ury whw 0 < 4-I W” < f . A dclailcd analysis of frr&cld Lhrory in (AdS)p xld 

its rolution LO stabilily nnd unitary rcprcscnlalionx of O(?, I) should still br pcrformcd. The 

nnxlysis would hc similar to lhr (MS)~ nnnlysia of [:%I. Ilowcvcr, WC cxpcct that the awkward 

ilalprovcttlc*nl proccxlurr! thcrr will hc auppklnlrd by the prc~c!nl ~~~c~l.hocl, and the cncqy cl4incd 

by (ii) will he v:rlid for 1wt.h rcqrlar :rnd irrrgulxr modes. 

\Vc now wish 11) :ir~uc IAIL Mo2 is lhc “righl” rnrrgy opcr:~lor in the: qu:ml.um I.ha*ory, xnd WP 

wi*h to procc4 in :L wxy which is inclq~rnclcnl d thr eoorllill:llir3l.ion d 111~ (.,\d.S)- hk~rouud 

:u,,I tlniT,brllb f0r :dI ~~~ncr:~lora MAD 4 O(?, I). ‘I’hc*rcf0rr. wc c:dculal.r {Q... ija} 10 d&~rnlitltr 

the sl>~-vilk: li,rlu III’ lhc O(2, I) geIhcr:d.ors whirh :bppv:u in (I). For I.his purp~bsc* wv 0m1pul.v lhr 
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C~:III~P d Ihc aupcreurrrr~l .I’ d (12) undrr a supcrsymmclry lmns~orrnnlion with Killing spinor 

p:tramcIzr C(z) = S(z)c. Spccifir;llly, We compute 

6,ti.l” = i[fQ, <Jr] (19) 

using (8) and (12). II we write QP in mom covariant forIn by intcgraling over a spacclikc surr:lcc 

2: with normal surrxc clcrncnt dC, = c,,” dz’ (with trv a tensor, i.c., co, = &i), then 

6. 
/ 

dC,?‘J’ = i[xQ,<Q] 

= iT,{Q.,Gp8)Cb (20) 

The computation or 6,ir’Jp involves some rancy Fierz-work, rcpoated use of (4), and the 

identity D”D,K* = -a?K* for Killing vecLors of (AdS)?. Total derivative boundary terms are 

not discnrdcd. The result is 

6, 
/ 

dC,tiJ’ = 2i 
I 

dC,{ryvt’T*” - a-’ Dy( WD”(T~~C’))} p) 

Since f7+’ is a lincnr combinalion ol O(2.1) Killing vectors, see (6), with the matrices 7., and 

io” which occur in (l), we can idcntif’y the O(2,l) g cnerakrs. of the superalgebra, as 

M AB = 
/ 

dC,(K,,B,T” - a-‘D,(WD”A’:,)} (22) 

Tl,us we see that the 0(2, I) gmcmtors MAB or the aupcrnlgcbrn dillcr from those conwtruclcd 

by Noclhcr’s lheorem (IO) by the second term in (22) which is a covnri:mt boundary krm (but 

which is kept as a conlribution to lhe inkgrand or MAB in a11 or Lhe rollowing). 

It is well known lhnl the canonical stress knsor 7”‘” can be improved by adding lhc quantity 

AT”’ = (g”D - IYD + R+‘)S (23) 

which is idrnlicxlly consrrvni in (AdS)d l’or any w:rlnr runclion S or lhc! firIds, and thrill tl,is 

conlribulcs only a boundxy lcrrn Lo the O(d - I, 2) charges [3]. llowcvcr, the bounclnry krm 

in (:‘“) an only be wriltrn in lhc r0rm (?:I), with S - IV(g), plus an rxtr:, houncl:lry lwm, 

,~roporlional IA, /jy( /i~D/luIW) wl,iA is d supcrpot.rnti:ll Torn, :,nd 1111,s iclc*nlic~:,lly rons(*rved. 

The supcrcurrrnt con also ix improved by adding 

A./’ = n’“(I), - i~57y)SJl 
- 

a 

(?I) 



wbirb identically .sAislics lhc r&v:mt “conservation” cqunlion Tar any sc;d:~r S, and adds n bound- 

ary term I.0 lbr supercharge Q-. Thr suprrcurrcr~l improvcmcnl WOIIM chnngc lbo gcncrntors 

;MAB by furlbcr boundary terms which WC b:rvc no1 compulcd in dclail, siner physicallly s:rti.+ 

ractory M,,B hnvc been obtained wiltlout such improvcmcnt. 

Lel us return lo (2?) and note that lbc cncrgy operator !A,, bccorncs idcnlical with (17) 

when cvntuntcd in lhc previous coordinntc syslcm. The scalar contribution to the cncrgy dcnsily 

lhrrerore has lhc dcsircd posilivily propcrtics. It may be possible lo prove poailivily in a rully 

covariant mnnncr, ix, for all spncctikc surrnccs and all globally positive timctikc Killing vectors, 

but [br the present WC will bc content wilh lhc previous coordinalc dependent proof. 

V. < M,~B > Vanisbcs! 

The next slcp is to show that the vacuum cxpcctnlion values < MAB > or lhc operators (22) 

vanish in a supcrsymmctric vacuum. WC will do this covarianlly to all orders in perturbation 

theory, but in B rormnl manner which dots not take the neecssary arc with ullraviolcl divcr- 

gences. In the next scclion we will perform a more carcrul rcgutaled calculation to one-loop order 

with the same vanishing result. The formal argument requires mme thcorctical dcvclopmcnt 

which we now begin. 

I<y applying (8) rcpcatcdly WC asily dcrivc lbe trnnsrormalion propcrlics or lhc supcrpotcntinl 

0pcr:rlor W(+)) 

6W = ?W’$ 

6W’qb = [-i j3w + W’F - ;w”&+ (25) 

6(W’F - f W&) = -ic(jW’$ + W’ p?jt) 
I 

which shows that W, kY’($)d, mid W’F - iW”$$ lrorlsrorm m lbc 4, 1/, nml F COIII~OIWIILS ol’ .? 

composite multiplrt. Using (4), the second cxprmion in (25) can br conjugxlcd and rrwrillarl :IS 

[i jW + W’F - ~W”&h].s = iS,,(z){Q,, It”(&)qP} (“0) 

WC HOW hkr lhc VXW~ cxpcclnlion VGIIU~ 4 (Y) _ B , :~nd USI! thy: rd tld 3, < W(I+~(S)) >= 0 

xs n cwrw.rc~ucmx or O(2, I) inv:Alncc , :md lb:11 lbr ~~xp~~~4:~l.iou v:duc d lbc rig111 side v:ulisb(*s 

if lbc* v:~~um is silpc:rsyllltclcll,ril:, which wc :~sam~:. I~ir~:dty. w0 use thc~ 0p~r:1tor Ii&l wluxI.iorl 
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/C(r) = -W’(C$(Z)), which is corrrcl bccxusr the Lransrurmal.ion rules (8) arc comp:Ablc with 

this cqualion or molion. (Indeed, WC could have usrd F = -W’ inili:dly in (25) and (26).) Thus 

WC have provrd that 

< w’(4)* + ;w”(&B(z) >= 0 (27) 

I,CL us now NC (27) lo prove ltml < MAIJ >= 0. First note that < 7”” >= ig”” < r; > 

in (AdS)2, bccausc the only O(2, I) invariant, conscrvcd symmclric tensor is the metric g““, 

Cduating the trace rrom (ll), and using lhe spinor field equation in (t3), we find 

< T; >=< W” + ;W”$J, - 2aW > 

= -2a < W(4) > 

where (27) is used in the tn.4 step. The cxpcclalion value OF (22) is thus 

(28) 

< MAE >= J d&{Kmv < T’” > -a-’ < W > D,D’Kb} 

=o 

whcrc WC hxve used. again D”D,K = -o’K*. Thus < MAB >= 0 in D supcrsymmctric 

vacuum bccnusc or an cxncl cnnccllnlion in the inlcgrand bctwccn the contribulion of < T*’ > 

and the contribution or < W >. Since in gencrat < W ># 0, and Wdctcrmincs the boundary 

terms by which MAB and %?AQ dillcr, WC see that thcrc is no reason Lo cxpecl that the naive 
. 

gcnerslors map have vanishing vacuum cxpcctellon v&m. 

Although the previous argument used lurmnl opcrnlor manipulations without rcgnrd for 

ultrnviotcl rcnormntizntinn, WC hclicvc? thal it is cntircly correct for lhc rottowing r~.~on. The 

action (!I) can bc rc~ut:lrizcd by adding Illuti-Vittnrs ~upcrmulliptcls with suitably rhosrn con- 

ptings I.0 Lhc physiczd lictdn. (SC [X] r or n ctiscukm in Il:rt aut~~rwp~c.) One would lhcn hnvc 

a rrjiukixrd ‘I’,.” , lnd W wilb utlraviotcl finite v.acuum c:xpc+:lalion vnlurr. ICq. (27) would hold 

(in :L rortn gcner:dircd lo inctuctr cuuptings to rrgut:rlor IkIds) :md lhc. r~lrrll:d t.r:u~ m:miput:rlion 

wtkich trndw La (2X) would bc v:rlict. Thus < AlA” >= 0 would bc: rorra~cl in I.hr~ rf*put:trizrd 

Ihrory, :md, by r0lllilluil.y, would hold in Lhc timil d tarp2 rcgutxlor wxsws. 

Vi. OIIC t00p rotllt”ll.:rt.ion or < MAB > 
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tl is this idcn which WP will now irnplcmcnl in 3 onr-loop rntcut:~tion of < MAB >. WC wilt 

first need some inrormnlion lo XL up pcrlurbnlion theory in (Ad.Q, and for this purpose wc 

look at the nction or I.hc rrcc rnassivc supcrmulliplct 

obtnincd by setting W = 6/@ in (9) and climinnling F. 

The Fcynmnn propagator CF(Z, z’) = -i < TV& > satisfies 

(CL + mZ)Cdz, 2’) = -(-g)-f6(z,z’) (31) 

As in all maximally symmetric spnccs, O(2,l) invariance implics that the propagator is a 

run&ion or the variable v..~,qy*y’~ whcrc yA (and Y’~) are rclnlcd lo z* (and 2”‘) as in (2). It is 

most convenient lo dcfinc the vnrinble 

.I& = ;a’(yA - y’-y 

= i[l -scepscep’(eos(t-4’)-sinpsinp’)] (32) 

which is onchatf the chordal distance bctwccn the points yA and y’B on the hyperboloid ol unit 

scnlc a = 1. The left side or (31) bccomcs the hypcrgcomctric cqualion. One chooses the solution 

which has the Iiame bchaviour at spalial infinity as regular solutions of’ lhc rrcc-ticld cquntion 

( D+m*)~(z) = 0, nnd one normal&s la reproduce the standard short dislancr singularity of 

two-dimcnsionnl field theory. Thr result is 

C(z, 2’) = - ;~~(-u)-*F(~,~;2x;u-l) 

-‘r-o Z[- log(-u) + 2+(I) - 2$(X) + r&t log(-U) + O(U2)] (33) 

x=;+ 
d- 

i+$ 

whcrc f?(z) = & log I’(,-). The ~lnnd:~rd :ulatyl.icity properly d b’(u. b; c; 2) wrrospwwts lo I.hr 

~imc or~trrcd Grc(:n’s t’unction, atlhough lhc strict notion of lime ordering must bc modilicxt [!I] 

btr:ulH! or thy pcculi:lr c:Lu4 propc!rt.irs d AdS. ‘I‘hc :wymplolie rorllld~l in (XI) W:U oblainc4 

rrorll :I 51.:1nd:~rd Irl:lltic~ll~:rlir:lt rcdi.roller~ [IO]. The sc:d:1r prop:~&or in (.U.S)., tms tlcc*n obl.:dnc:d 
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fro,,, similar c.onsidcmlions [I I]. The scalar prcipagalor (33) is ;u*Luxlly a I,cgcndrc run&m 

Ql-l(l - ‘?U), [IO]. 

WC also need the spinor propagator. This is cnsily obtained from the scalar propagator by 

a W;rrtl-‘r;lkch;lislli id(m1il.y. This idcnlily is oblaincd by lhc slandnrd mclhod of inserting S 

or [:$I)] in 3 path integral gcncrnling lirnclional with sourcca and pcrrorming a supcrsymmcLry 

translormalion (8). 11 is convcnicnl lo wrilc the result = 

s(z) < T$(z)T(z’) > S(d) = (s(z)i7’S(z)i), + p) < Td(z)dz’) > 

= (iq’K.2 -a&K,, + p) < T#(z)+‘) > (34) 

where dilTcrcntiation is with rcspcct lo z, and (6) h as been uacd. Nolc that (34) relates the spinor 

propagator for mass p Lo the scalar propagator for mass m* = p* --a~. Note Lhat (34) corrcclly 

d~tines the propagator ror a rcrmi Ii&i or mass Jo in (Ads)*, whclher or not the theory in which it 

appears is supcrsymmctric. One can verily directly rrom (34) that (i p-r) < ?‘$(z)$(z’) >= 

-i(-g)+6(z, d). 

To calculate < TJ” > using Pauli-Pillars rcgularization WC Lake a set ol mulliplcls &, $i 

with mass parnmclcrs 14;. WC Lhcn define 

< TFy >rrs= T C; < il,haAi + i&+Dvti - gwti[~(W)* - :(I&: - a~+)&] > (35) 

whcrc lhc physical mrrlliplcl 4,J, appears ‘% &J,JJO in the sum with co = 1 and /.Q = /J. On 

dimcnsionnl grounds < ‘fH, >,*# will be IiniLe provided that the hum rules xi ci = xi c;k = 

C, c;pf = 0 hold. Then we can take Lhe trace and obtain 

< T; >rrp= ~G[(P: --pi)< 4: > +$i <&tic >] 

= c Gl(P,l - api) < 4: > -rf < 41>] (36) 

whcrc Lhc rrgularirrd rorrn or (%I) 1 1.~ IICCII used LU i-xp~~ < &I > in LIYI~S or < @ >. WC 

s&Y that 

< ‘f: >re9= --(1 c r;,4 < 4,’ > (37) 

Ilowcvcr, by Lhc same method onn can c:rlculaLc 

< W(4) >rrp= ; p/4 < & > (3s) 
t 

12 



which is n linilc quantily. Thus WP lind th:1L (28) hulds in I-loop urdctr for alI v:ducs of the 

rrguhtor mnsx. This immccliatcly Irnds Lo the desired result, < M,JB > = 0. 

WC h:rvc not sludicd the* limit of infinite regulator muss explicitly, but WC nnticipnlc that the 

divcrrgcncc which nppcars Lhcrc cnn bc canerllcd by adding an inlinite constanl counter term to 

the supcrpotcntinl. One shuuld note lhal thcrc is no trncr nnomuly in this Lhcory. Although 

7’; = aR Tar two-dimensional rrcc licld Lhcory in a bnckground mrtric with scalar curvnturc R, 

the real scalar and Majorana spinor hclds contribute lo the cocmcient (L with equal and opposite 

sign. 

VII. C-Function Calculation ol lhe Vacuum Energy 

The I-loop calculation of < A402 > by means of supcrsymmetric l’auli-Villars regularization 

or < 2”‘” > and < W > in the integrand ol (22) can be compared with a calculation or the 

vacuum energy by <-run&on regularieation. Since such calculations have been performed [S&3] 

only fur (A&),, WC must now perform the calculation in (Ad.9)~ in order to compare results 

directly. The basic idea is to sum the energy eigenvalues wi of states of a unitary positive-energy 

irreducible representation olO(2,l) and to regulate this divergent sum using the Z-function. 

The relevant representations or 0(2, l), or, more prcciscly, ita universal covering group, are 

denoted by a real number wg > $ which is the lowest eigcnvduc or a-‘&l. The energy 

cigcnvaluea are then spaced by intcgcr with respect to wo, i.e., WC have w,, = (wn + n) and each 

level n = 0, 1,2, . . . has unit mulliplicity. For the rrct: supcrsymmctric licld theory (30), with 

;> {, the scalar licld corresponds lo a, representation with wn = i, and the rcrmi licld to a 

rcprcacntation wilh wn = (i) + i. Thcsc rcprescntations combine lo r&m a unitary irreducible 

rcprcscntation of the snpcralgcbrn OSp(l,2). For (Ads), the corrcxpondcncc bctwccn rrM: fields 

and rcprcscntations or SO(3,2) and OSp(l,4) has been discus& previously [14,15,3]. 

The rcpulatcd self encrgirs or the boson (,!I) nnd the fcrmion (F) nrc delincd by 

0 
/C&o, 2) = n x (w#J + n)-= = os,Jz, wg) 

n=O 

(30) 

IS&“, z) = II 5 (W” + ; + II)-= = q-R(Z, W” + &, 
“.-SO - M 
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:md :Ire rclntcd to the cxtcndcd Ricmnnn <-Tunrtion cR a.. indic:nt(~d. ‘I’hr physical v:duru arc 

drlinc~d by annlytic conlinualion lo z = -1, whcrc CR enn be cxprcsxd as a I$crnoulli pulynominl 

[iti] and we have 

E&l, -1) = f+w; + wg - f, 

(40) 

EF(WO + ;, -1) = ;a(+~ + $2 + (wn + ;, - ;, 

The total self-energy is the dil%rence between these two and we have 

Eg(uo, -1) = ;+ - f, (41) 

Thus the energy <-l’unction method prcdicls non-zero vacuum energy in asupcrsymmetric vacuum. 

We conclude that thia method of rcgularization breaks supersymmetry. For the massless supcr- 

multiplcts [5] of gnu@ extended supergravity roar d = 4 and N 2 5 and for the short repre- 

sentations [13] ol OSp(S,4) which occur in the round S, Kaluza-Klein solution ol’ D = II super- 

gravity, the c-function method does give zero vacuum energy. We believe that this indicates that 

the vacuum energy is less singular in these particular licld theories and thercrorc less scnsitivc 

to the method of calculation. Cnleulntions or the SO(N) coupling constant rfmormalization [16] 

support this interpretation. 

VIII. On the partition function: 

Let us note that an argument very similar to that ol Section V was used in [I] to show that 

the value ol the partition runction Z is independent or the Yukawn coupling constant for the 

WcssZumino model in d = 4 Minkowski space. In flat spncc log Z = -i Id’z t , wbcrc & is the 

vncuum energy density. Since f, is indcpcndcnt or lhc Yuknwn coupling, it has lhc Snmc value in 

the inlerncting lhcory (g # 0) M in the rrcr lhcory (g = 0). In the free lhcary & vnnisbrs since 

thcrc is an explicit czmccll:Aon bctwccn boson nnd rcrmion mode cncrgics.. 

In AAS lhcrr is no simple r&tion bclwccn the partition l’unction % and the vxuum cncrgy 

da*nsily 6 . l’hry arc simply dilTc*rrnl qu:mtilirs. In Scxtion V wc showed that & = 0 in 

supcrsymmrlric vacun. Now WC study lhc partition TunAon and show th:rl it dcpcnds on the 

inlc*r:u2lion ill AdS (:dI.h~~ugh i~~lr:r:u:lion inclcywclrnq~ is rcmwrrd in the Ilxt limit n +b 0). As 

0°C :q~plienlmn or lhw gcwr:d rrault WC show 1h:rt the p:wtii.ion Cudiw d thr rwr mwsivr 

14 



supersymmetric theory (30) drprnds on lhc m:~ss 11. This rxcl gives some inrormalion about lhe 

ratio of determinants or lhc boson and krmion wave opcrntors in anti-dcsitter space. 

Let UB deGne the partition runction 

where S is the action (9) and the mcmure is da = II,,, d4(z)d$,(z)dF(z). Under a small variation 

6W of the superpotential, Z changes by 

6z = i/dac’S/ d’z&{i ,&W + F6W(4) - :6W”(4)&j + o6W(#)} (43) 

where the first terms can be added to the variational derivative because it vanishes in an O(2,l) 

invariant state. The sum of the first three terms can be recognized as the transf’orm of the ~6 

component of a composite supermulliplet as in (25) with W replaced by 6W. Ek+ (26) then 

implies that this sum vanishes in a supersymmetric state, so that our basic formula reduces to 

6~z=ia/d~eis/dzz~6w(~(z)) 

Let us apply this formula to the free theory (30) with W = id*, and obtain 

(44) 

g = $0 Jd+P Jd’zt/+‘(z) (45) 

This indicates that boson and fermion determinants satisfy 

-$ log [ 
det( +/A’ -UP) 

det(i p - a) 1 J = ia d*zfi < 4*(z) > (46) 

Thus the ratio of d&rminants in (Ads) 2 is both ullraviolct and volume divergent.. 

IX. Summary 

What we hxvc done in this pnpcr is lo show that the O(2,l) gcncmtors which appcor in 

the supersymmetry antirommulalor (1) arc givrn by (22). They dilTcr by a covnrinnl surlke 

lxrm rrom lhc naive gcncrxlors (IO). The improved rnrrgy opcrnlor has lhc proprrlics which 

WC would hnvc cxpcclcxl from il:d.-sp.xc supcrsymmctry. The el:wsir:d cncrgy dcnsily is posilivc 

semi drlinilc and vanishes only in xuI’cr~yillllll!lric ~~~rlligur:lliorls. Qmnlum mcch:mir:rlly the 

improved v:~cuum cncrgy v:tnishcs lo all orders if supPrsymrnci.ry holds. 
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Nevertheless, there are still some differences between flat space and II& supcrsymmetry. 

In flat space if there is a supcrsymmetric minimum of the potential, then any supcrsymmetry 

breaking stationary point has higher energy and is unstable. In Ads the O(2,l) invariant states 

correspond to stationary points or the scalnr potential V(4) = b(W’(4))s - aW(#). For some 

potentials there are supersymmetry breaking states which lie above supersymmetric ones. In 

other potentials the breaking states lie below the supersymmetric ones. The relative ordering 

of states in the potential V(4) (and the ordering of constant configurations in the improved 

energy density (17)) is at best an incomplete guide to their relative stability. Supersymmetric 

states are always stable, since the energy of fiuctuations about them is globally positive. Non- 

supersymmetric states may or may not be stable depending on details of the potential. The basic 

reason this situation is different from that in flat space has little to do with supersymmetry. It 

is the fact that penetration of a potential barrier does not always occur in AdS for geometrical 

reasons [18]. Bubble,formation is not always energetically possible. One consequence of this is 

that a model of the type (9) can actually have several stable ground states, some supersymmetric 

and some not. 

The present results have been established only fo! OSp(l, 2) supersymmetry in D = 2. The 

extension of these ideas to OSdl, 4) supersymmetry in four dimensions is currently in progress. 
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